研	究	助	成	報	告	書((中間	• (「終了))	No.1
	~ •	-/-		110	H			\ \		/ /	11011

整理番号	2023 — J —061	報告者氏名	下迫 直樹					
研 究 課 題 名 水晶振動子マイクロバランス法を用いた光触媒分解における大気酸素の影響解明								
<代表研究者>	機関名:静岡大学	職名:	助教 氏名:下ì	白 直樹				
<共同研究者>	機関名:	職名:	氏名:					
	機関名:	職名:	氏名:					
	機関名:	職名:	氏名:					
	機関名:	職名:	氏名:					

<研究内容・成果等の要約>

本研究は、宇宙機の観測データ劣化の原因となる「分子状コンタミネーション」に対し、光触媒を 利用した解決策を提案することを目的とする.宇宙機に使用される有機材料からのアウトガスが光 学系に付着することで、観測データの散乱や吸収を引き起こす.この現象を光触媒によって分解 することで、汚染による観測精度の低下を抑制できる可能性がある.TiO2を用いた先行研究では、 真空環境下で分解が停止することが報告されており、本研究では光触媒材料として MoO3 に着目 し、真空環境下での分解停止の原因、特に大気酸素の影響を明らかにすることを目指した.

MoO₃ 薄膜は RF スパッタリング法で作製し, アニール処理により構造を調整した. XRD 測定の 結果, 300℃以下ではアモルファス状態, 400℃で純粋なα相が形成されることを確認した. 汚染物 質としてクエン酸を真空蒸着した MoO₃/QCM に UV 光(波長 365 nm)を照射し, 大気中および真 空環境下で質量減少をリアルタイムにモニタした. 大気中ではアモルファス MoO₃も 400℃アニー ル試料も光触媒活性を示し, 特に 400℃アニール試料で最大の活性が観測された. 一方, 真空環 境下では質量減少が確認されたものの, 減衰速度が徐々に低下し, 相対質量が約-10 µg/cm² で 分解が停止する傾向を示した. 分解後の試料は黒色化が顕著であり, 分解量が多いほど色の変 化が大きくなることが確認された. また, 大気中に試料を戻すと, フォトクロミズム的な現象により元 の色に戻ることが観察された. この現象は, 分解時に MoO₃ が自身の酸素を消費することによって 進行していることを示唆している. 励起電子が自身の酸素を利用して分解を促進するもののの, その 酸素消費には限界があり, 分解が最終的に停止する原因となっていると考えられる.

以上の結果から,真空環境下での分解停止の主因は大気酸素の欠如である可能性が高いこと が明らかになった.光触媒自身の酸素以外の経路で励起電子を消費できるメカニズムを設計する ことで,真空環境下でも持続的に光触媒活性を発揮できる新しい材料の開発が期待される. <研究発表(口頭、ポスター、誌上別)>

【論文】

1. N. Shimosako, K. Takahashi, H. Sakama: "Evaluation of the self-cleaning ability of MoO₃ thin films prepared by radio frequency magnetron sputtering using a quartz crystal microbalance technique", *Thin Solid Films* 809, 140584 (2025).

【口頭発表】

1. 下迫直樹, 高橋海斗, 坂間弘: "真空環境下における MoO₃ 光触媒活性の評価", 第 68 回 宇宙科学技術連合講演会, 2H04, 姫路市文化コンベンションセンター アクリエひめじ, 2024 年 11 月.

【ポスター発表】

- 1. N. Shimosako, K. Takahashi, H. Sakama; "Photocatalytic activity of MoO₃ using quartz crystal microbalance in vacuum for contamination control of spacecrafts", International Symposium on Materials in the Space Environment and International Conference on Protection of Materials and Structures in the Space Environment, #10, Saint-Raphaël, France, 2024 年 10 月.
- 横家暉,高橋海斗,坂間弘,下迫直樹: "QCM 法を用いた MoO3 の光触媒活性の評価",第 85回応用物理学会秋季学術講演会,18p-P02-14,朱鷺メッセ,2024 年 9 月.
- 3. 柳原拓弥, 下村勝, 下迫直樹: "水晶振動子マイクロバランス法を用いた二酸化チタンの光 触媒活性評価", 第85回応用物理学会秋季学術講演会, 18p-P02-10, 朱鷺メッセ, 2024年9 月.

No. 3

<研究の目的、経過、結果、考察(5000字程度、中間報告は2000字程度)>

【研究目的】

宇宙機の多くは、宇宙空間で主に「光」を観測している.しかし、これらの宇宙機が取得する観測データが、時間の経過とともに劣化することが報告されている.図1には、土星探査機「カッシーニ」によって取得された画像を示す[SpaceOps 2006 Conference AIAA 2006-5834,1 (2006)].打ち上げから 87 日後と150 日後に取得された画像を比較すると、150 日後の画像がぼやけていることがわかる.この観測データの劣化は、宇宙機に使用されている有機材料から放出された有機物の付着、すなわち分子状コンタミネーションが原因であると結論付けられている[Fundamentals of Contamination Control (SPIE,

図1: 土星探査機「カッシーニ」の打ち上げ から 87 日後と150 日後に取得された画像.

2000)]. 宇宙機は軽量化のために様々な有機材料を使用しており,これらの有機材料に含まれる 未反応物質や添加剤が宇宙空間で放出される.このアウトガスがミラーやレンズなどの観測系に 付着することで,観測光の散乱や吸収を引き起こし,観測データの劣化を招く.この現象を分子状 コンタミネーションと呼ぶ.一方,塵や埃などに由来する粒子状コンタミネーションも問題となるが, 本研究では分子状コンタミネーションに焦点を当てるため,以下では「コンタミネーション」は分子 状コンタミネーションを指すものとする.

我々は、宇宙機のコンタミネーション対策として光触媒に着目した.光触媒は光エネルギーを利用して、付着した有機物を分解する能力を有している.光触媒材料として広く知られる TiO₂は、すでに実用化されており、ホームセンターなどでも入手可能である.光触媒を用いて宇宙機の分子 状コンタミネーションを分解することができれば、汚染の影響を受けない高精度な測定が可能になると考えられる.

地上では実績のある光触媒であるが、宇宙という過酷な環境下での動作確認が必要となる.本研究では特に真空環境に着目した.光触媒による分解反応には、大気中の酸素や水が関与しており、それらが存在しない場合、光触媒活性が著しく低下することが報告されている.そのため、真空環境では光触媒が有効ではないと考えられるかもしれない.しかし、宇宙機における汚染物質の量は地上に比べて非常に少なく、有機材料からの汚染物質の放出レートも年単位の時間スケールであり、極めて遅い.このため、たとえ分解がわずかであっても、光触媒は宇宙機のコンタミネーション対策として十分に有効であるといえる.

これまでに、TiO₂を用いて真空環境下における光触媒活性を調査した[Acta Astronaut. 213, 29 (2023), Acta Astronaut. 178, 693 (2021)]. その結果, 真空環境下では光触媒活性が徐々に失われ, 最終的に分解が停止することがわかった. 一方, 大気環境下では付着した汚染物質を完全に分解することができた. このことから, 真空環境下で分解が停止する原因は, 大気酸素か水の欠如である可能性が高い. しかし, どちらの関与が欠如したために分解が停止したのかは不明である. そこで本研究では, 光触媒材料として MoO₃ に着目した. MoO₃はフォトクロミズム材料として知られ, UV 光照射によって Mo⁵⁺が導入され, 黒色化することが報告されている[J. Chem. Phys. 76, 780 (1982)]. 本研究では, Mo⁵⁺が導入されすい性質を持つ MoO₃の光触媒活性を調べることで, 真空環境下における分解停止の原因を明らかにすることを目的とした.

【結果と考察】

MoO₃ 薄膜は RF スパッタリング法 によって作製した. その作製条件を 表1に示す. MoO₃は水晶振動子マ イクロバランス(QCM)上に成膜し た. QCM は付着物の質量変化をナ ノグラムオーダーで測定できるた め, 光触媒によって分解された汚染 物質の質量減少から光触媒活性を 評価することが可能である. この

表1: RF スパッタリング法は	こよる MoO3の作製条件.
真空度	1.2×10 ⁻² Torr
基板温度	室温
雰囲気	Ar: 50 sccm, O: 10 sccm
電力	50 W
ターゲット	MoO ₃
基板	QCM
スパッタ時間	60 min

QCM 法による光触媒活性の評価手法は,汚染物質が付着している限り,どのような汚染物質に対しても光触媒活性を調査することが可能である. QCM に成膜後,大気中で1時間アニールを行った.

作製した MoO₃/QCM を真空装置に取り付け, 汚染物質としてクエン酸を真空蒸着した. その後, 大気中および真空中(~10⁻⁴ Pa)で, 波長 365 nm の UV 光を照射し, 汚染物質の質量減少をリア ルタイムでモニタした.

図2にMoO₃/OCMのXRDパターンのアニ ール温度依存性を示す. as-grown 試料および 100℃と 200℃でアニールされた試料のパター ンには、OCM 基板に由来する $2\theta = 26.6^{\circ}$ の石 英由来のピークを除き,他のピークは観測され なかった. これにより, これらの試料がアモルフ ァスであることが確認された.アニール温度を 300℃に上げると、試料は単斜晶(B)相を示し 始めた.しかし、300℃でアニールされた試料 には直交晶(α)相の小さなピークも観測され た.この結果は、試料がB相を主体としながら も,α相とβ相が混在する構造を持つことを示し ている. さらにアニール温度を 400℃に上げる と, 試料は純粋な α 相に移行した. このアニー ル温度の上昇による相転移は,先行研究の結 果と一致している[Catal. Commun. 13, 10 (2011)].

図 3 は大気中における光触媒活性 k のアニ ール温度依存を示す. QCM 単体の k 値を差し 引くことで補正し、光触媒活性には光分解や蒸 発の影響が含まれないようにした. この結果、 アモルファス MoO₃ が光触媒活性を示すことが 明らかとなった. このアモルファス MoO₃ が光触 媒活性を示すという結果は、先行研究[*Catal. Today* 349, 150 (2020)]とも一致している. また、 300℃でアニールされた試料はアモルファス試

料と同程度の光触媒活性を示したが、400℃でアニールされた試料は最大の光触媒活性を示した. そのため、真空環境下における光触媒活性の評価は400℃アニールの試料を用いて行った.

No. 5

図4に真空環境下における400℃ア ニール MoO₃/QCM による汚染物質の 相対質量減少を示す.なお,この減衰 は光触媒分解による減衰のみを議論 するため,大気中の結果と同様に,UV 照射した QCM 単体の減衰を差し引い ている.真空環境下においても,光触 媒分解によって汚染物質を分解してい ることが確認できる.しかし,その減衰 速度は徐々に低下し,相対質量が約 -10 µg/cm² で分解が停止する傾向を 示した.付着量が約 50 µg/cm²であるた め,付着している汚染物質のすべてを 分解する前に分解が停止していること がわかる.

図5に,真空環境下で分解後の試料 の写真を示す.分解後の試料は黒く変 質していることが確認できる.また,分 解量が5µg/cm²の場合と11.5µg/cm² の場合を比較すると,分解量が多い場 合にはさらに黒色化が進んでいること がわかる.さらに,分解後の試料を大気 中に放置すると,黒色化が徐々に消失 し,元の色に戻ることが確認された.

一般的に、光触媒中では、光励起に よって生成された e⁻と h⁺のうち、e⁻は大 気酸素によって消費され、h⁺が汚染物 質を分解するとされている.しかし、真 空環境下では大気酸素が存在しない ため、e⁻の消費が進まず、e⁻と h⁺間の再

MoO₃/QCM による汚染物質の相対質量減少.

図5: (a)汚染蒸着後, (b)5 µg/cm²分解後, (c)11.5 µg/cm²分解後の MoO₃/QCM の写真. (d), (e)はそれぞれ(b), (c)を大気中に放置した後 の写真.

結合確率が上昇することで分解が停止すると考えられる.また,大気酸素が存在しない場合,光 触媒自身の酸素を分解に利用することが知られており,本研究においても,励起電子が自身の酸 素を消費することで,真空環境下でも光触媒分解が進行していると考えられる.酸素を消費した結 果, MoO3 中に多くの Mo⁵⁺が生成され,その影響で試料が黒色化したと考えられる(図 5).汚染 物質の分解量が少ない場合には,試料は中間色のグレーを呈し,また,大気中においてはフォト クロミズムのように元の色に戻ることが確認された.この現象は,分解時に酸素が消費されるという 考察と矛盾しない.光触媒自身の酸素の消費には限界があるため,分解速度が徐々に減少し, 最終的に分解が停止する傾向を示したと考えられる.

これらの結果から,真空環境下で分解が停止する原因は水よりも大気酸素の欠如の可能性が 高いことがわかった.光触媒自身の酸素を利用すると活性は向上するが,いずれ分解は停止して しまう.励起電子を自身の酸素以外のパスで消費するルートを設けることで,真空環境下におい ても分解が停止しない光触媒が開発できると考えられる.